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Abstract. We propose an exterior Newton method for strictly convex quadratic programming (QP) problems.
This method is based on a dual formulation: a sequence of points is generated which monotonically decreases the
dual objective function. We show that the generated sequence converges globally and quadratically to the solution
(if the QP is feasible and certain nondegeneracy assumptions are satisfied). Measures for detecting infeasibility
are provided. The major computation in each iteration is to solve a KKT-like system. Therefore, given an effective
symmetric sparse linear solver, the proposed method is suitable for large sparse problems. Preliminary numerical
results are reported.
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1. Introduction

We consider convex quadratic programming (QP) problem of the form:

xeRn

1
min {q(x) = ExTHx +ch}

subjectto Ax =b (1.D

—e=x=<e,

where H € R"*" is symmetric and positive definite, c € R", A € R™*" (m < n) with full
row rank, b € R", and e € R" is the vector of ones, e = [1 --- 1]7. It should be noted
that constraints of the form / < x < u can easily be transformed to the form —e < x < e
by shifting and scaling, provided / < u and all bounds are finite.
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We propose an exterior Newton method which generates a sequence of points converging
globally and quadratically to the solution of (1.1), assuming (1.1) is feasible. Measures for
detecting infeasibility are provided.

Exterior methods have the advantage that no feasible starting point is required. They are
especially suitable for problems where feasibility is uncertain. Many of the well-known
penalty function methods for nonlinear programming are exterior methods (see, e.g., [7])
and [8]). However, in most cases determining an appropriate penalty parameter in each
iteration can be difficult. Our proposed method is penalty-parameter-free, and is based on a
dual formulation of problem (1.1): a sequence of points is generated which monotonically
decrease the dual objective function. A feature of the dual problem is that it has no con-
straints (though it involves a nondifferentiable term). Hence techniques for unconstrained
minimization can be adapted. Moreover, the major computation in each iteration is to solve
a KKT-like system. Therefore, applicability to large sparse problems depends on the ability
to effectively solve large sparse symmetric linear systems.

In [4], a new exterior method is proposed to solve convex QP with simple bounds. It
is shown that such a QP problem can be transformed into an unconstrained minimization
problem involving a piecewise quadratic function. Global and superlinear convergence
results are established and the potential of such methods is demonstrated by the results of
numerical experiments.

Our method is an extension of the exterior method proposed in [4]. However, this exten-
sion is by no means trivial. For example, feasibility is not an issue for simple bounds but
is important for problem (1.1). In addition, we improve the convergence results. Specifi-
cally, we prove global convergence without assuming strict complementarity, and quadratic
(instead of superlinear) convergence is established in this paper.

There are numerous studies on solving convex QP. For example, [2, 3,9, 10, 13-17, 24],
and [25]. More references may be found in [4] and [25].

Given a function f: " — 3, we use V f to denote the gradient of f and V2 f to denote
the Hessian. Given x* and x*, we write *= f@&*), f¥ = f(x*), and use similar notations
for V f and V2 f. We use superscripts to denote the iteration counts and use subscripts to
indicate the indices of vector components. Occasionally the superscripts will be dropped
when there is no confusion. The norm || - || used in this paper is the I, norm unless otherwise
specified. Sets will be denoted by calligraphic capital letters. Given a vector x € R” and a
vector [ € R", the notation x > [ means x; > [; forevery 1 <i < n. Wecall x a feasible

pointif Ax = band —e < x < e. If u and v are two vectors, we denote (u, v) :=[u” v7]".
When M € R"*" is a square matrix, the notation M > 0 indicates that M is positive definite
and the notation M > 0 indicates that M is positive semidefinite. If x denotes a vector,

X = diag(x) = diag(x;, x2,..., x,) will denote the diagonal matrix whose entries are
the components of x. Finally, if x = [x1, x2,..., x,]" and M = (m;;) € R"*", then
Ix| = [Ix1], Ix2l, ..., |x[)" and M| = (m;;|) € R"*".

In the rest of this section, we give the optimality conditions for problem (1.1). In the
subsequent section, we establish the equivalence of (1.1) to an unconstrained minimization
problem where the objective function is a “dual” non-differentiable function. The algorithm
is given in Section 3. Global and quadratic convergence are proved in Sections 4 and 5.
Preliminary numerical results are reported in Section 6, followed by some concluding
remarks in Section 7.
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The optimality conditions for (1.1) are well known and can be expressed as follows: x*
is the solution to (1.1) if and only if there exists w* € R™ such that

—e<x*<e, (1.2)
Ax* =b, (1.3)
(Hx* +c— ATw*); #0 = x} = —sign(Hx* +c — ATw*),), (1.4)
where sign is the sign function defined by sign(t) = 1if t+ > 0 and sign(t) = —1if t < 0.

The vector w* is known as Lagrange multiplier.
If we let y* = Hx* +c — ATw*, then x* = H™'(y* — ¢ + A”w*), and conditions (1.3)
and (1.4) are equivalent to the condition that (y*, w*) satisfies the nonlinear equation

(1.5)

Y i
Fly, w) = [ (x;AfZ(y))] _ 0,

where Y = diag(y) = diag(y1, y2,...,y,) and sign(y) = (sign(y1), sign(y,), ...,
sign(y,))T. The nonlinear system (1.5) is important and points to the promise of a Newton-
like method.

2. An equivalent dual problem

In this section, we show that (1.1) is equivalent to the following unconstrained minimization
problem:

, | 1
r;nugl{f(y, w) = Q—yTHy+bTy+ Iyl + icTH“c}, 2.1)
where
oyl - H-'  HAT _ —H™ ¢
= ) H = ) d = .
Y [w] I:AH" an-AT |0 M PE g (22)

Theorem 2.1.  Ifx™ is the solution to (1.1) and w* is a Lagrange multiplier, then (y*, w*)
is a solution to (2.1) with y* = Hx* + ¢ — ATw*. On the other hand, if (y*, w*) is a
solution to (2.1), then x* = H™'(y* — ¢ + ATw*) is the solution to (1.1) and w* is a
Lagrange multiplier.

Proof: We show that (2.1) is a reformulation of the standard dual of (1.1). Then the
theorem follows from the standard duality results.




8 COLEMAN AND LIU
The standard dual of (1.1) can be written as

. l T T/ T
max 2x Hx +b" (uy — us) + e {usz + uy)

subjectto Hx + AT (uy — uz) + (u3 — ug) = —c (2.3)
Ui, up, us, ug > 0.

Let w = uz —u;, y = ug — u3, and change max to min. Then problem (2.3) is equivalent to

1
min {ExTHx —bTw+ |yl }
subjectto Hx — ATw—y = —c,
which can be seen the same as (2.1) by using x = H~!(y + ATw — ¢) (since H > 0). O

By Theorem 2.1, to solve (1.1), we may solve (2.1) instead. The next theorem gives
some primal-dual properties of (1.1) and (2.1). Again it follows from the standard duality
results so the proof is omitted.

Theorem 2.2. Let the feasible point set of (1.1) be
Qi={xeR":Ax=b,—e<x<e}.

Then,
(1) If 2 # O (the empty set), then

—f(y, w) < q(x) for every x € Q and for every (y, w) € R™*", 24)

(1) Let (x*, y*, w*) be a triple. Then x* is the solution to (1.1) and (y*, w*) is a solution
to (2.1) if and only if x* € Q and

—fO" w") = q(%).
(iii) Problem (1.1) is infeasible if and only if the function f is unbounded below.

3. The algorithm
We present an algorithm to minimize f(y, w). When a minimizer of f is identified, the
solution to (1.1) is obtained. Our algorithm generates a sequence {(y*, w*)} which mono-

tonically decreases f. Simultaneously, a sequence {x*} is generated, which, under certain
conditions, will converge to the solution of (1.1).

3.1. Compute search direction

At any point (y, w) such that y; # O for all 1 < i < n, both functions f and F (defined
in (1.5)) are twice continuously differentiable (they are actually in C*). At such a point,
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we have

Vf(y, w) = [Axd_b], V2f(y,w) = H, (H isdefinedin (2.2)) (3.1)

and
v |:D+YH“1 YH AT

= AR AH'IAT] , (the Jacobian of F)

where
d = x +sign(y), D =diag(d), and x=H '(y—c+ ATw). (3.2)

A Newton direction for (1.5) at a differentiable point is defined to be the solution to

Yd
VFs = — , (3.3)
[Ax - bi|

which is equivalent to

ol

To obtain fast local convergence, unit Newton steps are locally attractive. However, when
the current point is far from the solution, a Newton direction may not be a descent direction
for f. Therefore, we consider a “modified” Newton equation:

R G- A D 34
+ 0 0 s =-=Vf, 34

where Y| = diag(|yl) = diag(|yil,|y2l,...,1ya) and |D| = diag(|d|) = diag(|d;|,
|dal, ..., |d,]). It can be shown that Eq. (3.4) yields a descent direction for f and the
“modified” Newton equation is identical to the Newton equation (3.3) in a small neighbor-
hood of a solution (y*, w*) (see Section 5).

A Newton direction or a modified Newton direction is well-defined only at a differen-
tiable point. Therefore the proposed algorithm generates a sequence of points strictly in the
differentiable region (converging, asymptotically, to the optimal point which is typically a
non-differentiable point). Differentiability is maintained with the aid of subproblem (3.5)
which we describe next. Let A > 0 be sufficiently small. Write s = (sy, s,,) = [s] 571"
and |Y|7 = diag(|y|?) = diag(|y1]2, |y2|2, ..., |ya]2). The solution to

1
min —sTV2fs+VfTs
2 3.5)
subject to || |Y|“%sy ]| < A (A varies from iteration to iteration)

is a descent direction for f, and, (y +s,); #0ify; #0 (1 <i < n).
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Problem (3.5) is similar to but slightly different from a Dikin affine scaling subproblem
(see {6]) in that |Y| =2 is used in (3.5) while |Y|™! is usually used in a Dikin subproblem.
Our idea is to compute search directions which reflect a smooth transition from the solution
of (3.5) to the “modified” Newton direction, i.e., the solution of (3.4). Therefore, quadratic
convergence can be expected. Since a solution to (3.5) satisfies the following linear system
(see, e.g., [21]),

_ AlYITH 0
H + 0 0 s = —V f for some A > 0,

we compute a search direction by solving the following equation:

Hys = _st (3:6)

IY|"'Dy 0

0 0:, and Dy =61+ (1-6)|D|. 3.7

The parameter 6 = 6(y, w) is calculated by

NFQ,w)l| T ) _
0 = IF (O, wo)] + e’ max{|x| — e, 0}

— F . 9
P+ qrtal + e max{|x| — e, 0}

(3.8)

where (y°, w?) is the initial guess, x = H™'(y—c+ AT w), p > Oisa constant, and |x| — e
is componentwise subtraction. It is easy to see that 0 < 6 < 1 and that § = 0 if and only
if (y, w) is a solution of (2.1). When 6 — 0, the solution to (3.6) approaches the modified
Newton direction, the solution of (3.4).

Equation (3.6) can be conveniently written as

(H™' 4+ 1Y""'Dg)sy + H 1A s, = —d (3.9)

AH 'sy, + AH7'ATs, = b — Ax, (3.10)

where we have written s = (s, 5,) 1= [s),T sT17. These two equations will be useful in
our convergence analysis, but they will not be used to calculate the search direction s.

The next result shows that H, > 0 whenever 0 7 0. Hence the solution to (3.6) is a
descent direction for f.

Lemma3.1. Suppose6 > 0andy; #0foralll <i < n. Then Hg is positive definite.

1
Proof: Let Dy := IYI‘%D(,Z. Clearly, Dy > 0 whenever § > 0 and y; # O for all
1<i<n.




AN EXTERIOR NEWTON METHOD 11

By the Sherman-Morrison-Woodbury formula (see, e.g., [11]), we have (H ™'+ D3)~1 =
H—-HDy(I+ Dyh_’Dy)”1 DyH. Since A has full row rank, we see that the Schur complement
of H~! 4+ D? in Hy (see [12]),

1

AHT'AT —AH7'(H7'+ D})  H'AT

= ADy(I + DyHDy) 'Dy AT > 0.

Therefore, by Corollary 1 in [12], Hy > 0. 0O

Corollary 3.2. Suppose 6 > 0. Then at any point (y, w) satisfying y; # 0 for every
1 <i < n, the solution s of (3.6) is a descent direction for f.

Explicitly forming and solving (3.6) is impractical since H, involves the usually dense
matrix H~! and several matrix products. However, it can be shown, using linear algebra
manipulations, that (3.6) is equivalent to the following KKT-like system:

1o ! ;

DZHD; +1Y| DZAT || 5 2
o L B V=] PeFd (3.11)

AD} 0 Sw A sign(y) +b
1 1
where the notation D; means D; D; = Dy and
1

§, = Y7 D¢s,. (3.12)

The coefficient matrix in (3.11) reflects the sparsity of H and A since Dy and Y are diagonal.
The following vector will be used in the algorithm:

sy = H (s, + ATsy), (3.13)

which, by arranging the first (block) equation in (3.11), can be calculated by
1
sy = —d — D; 5. (3.14)

Given any initial guess y° such that y? # 0 for every 1 < i < n, we choose w® and x°
that satisfy

H AT x° ¥y —¢
A o fl=w|"| » | (3.15)

This choice implies Ax® = band x° = H71(3° — ¢ + ATw?).

We can now state the algorithm.
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Algorithm Exterior-Newton

Let0 < p < 1. Let (y°, w?, x°) be the initial guess.
Fork =0,1,2, ... until convergence

1. Compute d*, || F(y*, w*)||, and 6*. (by (3.2), (1.5), and (3.8))
2. Compute s* = (s¥, sk) and sk. (by (3.11), (3.12), and (3.13))
3. (L wht xRy = (g wk xky 4 o (s}, 5%, s¥) where o* > 0 is the step length.

The procedure for determining o* will be described next.

3.2.  Determine step length

Now we show how to calculate the step length o* for each iteration. Define for each k a
univariate function

Yr(a) = f(yk +as§, wk —|—as,’;), a > 0.

Ideally, o* should be a global minimizer of V. However, to keep every iterate a differ-
entiable point of f, a small perturbation might be needed occasionally. We first describe
how to calculate a global minimizer of ¥ and then describe how to make the perturba-
tion. For notational simplicity, we will omit the superscript k for the rest of the section. So
y=y,w=uwks, =s’y‘,a=ak,and1/f = Y, etc.

Since f is convex, ¥ is convex. Hence any local minimum of v is a global minimum.
Since f is continuous and piecewise quadratic, ¥ is continuous and piecewise quadratic.
The nondifferentiable points of ¥ are those & > 0 such that Yi +a(sy); = 0 for some
1 <i < n. We will call these nondifferentiable points of ¢ the break points and put them
in a vector r € R" which is defined by

X if(sy)i £ 0and——2 5 0
r = (sy); Sy)i (1<i<n). (3.16)
00, otherwise

Clearly y; + ri(sy); = 0 for those i such that r; # 00.
Let

(B, p] = sor1(r), (3.17)
where the operation sort returns a vector 8 € %" and a permutation vector p such that

Bi=rp(1<i<n) and B <B<---<B,. (3.18)
Let By = 0and B,,; = co. Let

imax =max{i:1 <i <n, B; < o0},
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\ W(00) P

Figure 1. The 1-dimensional view.

i.e., Bimax 18 the last break point of . At each point §; (1 < i < imax), the function v is
nondifferentiable. But on each interval (8;, f;+1) (0 < i < imax), ¥ is a.convex quadratic
function. In addition, ¥/'(«) is piecewise linear and " () = sxT Hs, (independent of o)
which follows from the definition of f in (2.1) and the definition of s, in (3.13). Typically,
¥ can be illustrated by Figure 1.

Let the right-hand derivative and left-hand derivative of ¢ at ; be

Y1) = lim y'(Bi+1) (1= < imax) (3.19)
and |
Y(B7) = lm y'(f 1) (1 <i < imax), (3.20)

respectively. Define
imin :=min{i:1 <i <n, B; < o0, ¥'(8}) = 0},

i.e., Bimin 1s the first break point of ¥ at which ¥ has a nonnegative right-hand derivative.
Then the “left-most” global minimizer of v, denoted by «,,,, can be calculated as follows.

00, if " = 0 and imin does not exist (Case 1)
Bimin’ if ¥” = 0 and imin exists (Case 2)
Y (Bia) ey o .

Copt = 1 Bimax — g if ¥” # 0 and imin does not exist (Case 3)
Bimin if ¥” # 0, imin exists, and ¥'(B;,,,) <0 (Case 4)
w(ﬁ;;"n-—] . ” . . . 2 —_ =

Bimin—1 — Yy if ¥” # 0, imin exists, and ¥'(8;,.) > 0. (Case5)

(3.21)

The five cases are shown in Figure 2 on Page 7.
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1 a 1 o 4 a
B imax B imin B imax
Case 1 Case 2 Case 3
1 o L o
l3imin B imin -1
Case 4 Case 5

Figure 2. The 5 break point cases.

The next several lemmas tell us that we can efficiently calculate Qop. The first lemma
can easily be proved by induction and using (3.15) and its proof is omitted.

Lemma3.3. Let{(y*, w*, x*)} be the sequence generated by Algorithm Exterior-Newton.
Then for every k,

Axk = b, (3.22)
= HGF —c+ ATwh), (3.23)

and
Ask =0. (3.24)

Lemma34. Foranya >0, a # B; (1 <i < imax), we have
v (@) = sTHs, = sTs, (3.25)
and

Ve =sjd+asis,+2 Y [(s,);], (3.26)

{jirj<a)

where d = x + sign(y) is defined in (3.2).
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Proof: First, by (3.13) and (3.24), ¥" () = s Hs, = s!s, + sT ATs, = sI's,. Then by
(3.1) and (3.22),

¥'(a) = sSTVF(y + asy, w + asy)
= syT (x + as, + sign(y + as,))

= syTx + asyTsx + syTsign(y + as,). (3.27)
Since

sign(y;), ifrj >a

sign((y + asy) ;) = { 1<j<n), (3.28)

—sign(y;), ifrj <a
we have

sign(y + asy) = sign(y) — 2 Z sign(y;)e;,

{j:rj<a}

where e; is the jth column of the identity matrix. Therefore (3.26) follows from (3.16).
O

Lemma3.5. Foreachiteration, O(n log n) comparisons and O (n) arithmetic operations
are required to calculate oy

Proof: First, we can sort the vector r to get 8 and p in O (n log n) comparisons (see, €.g.,
Page 271 of [1]). Then by (3.26), (3.19), (3.20), and the fact that B; =rp, (1 < j < imax)
(see (3.18)), foreachi = 1,2, ..., imax,

W (B =sld+ Bisy s +2)_ 1(sy)p,] (3.29)
j=1
and
i—1
W (B7) = sld + Bist s +2) 1(sy)p,l. (3.30)
j=1

Therefore we can calculate all the required quantities in (3.21) in O (n) arithmetic operations.
O

We now show how to make the perturbation when a,p, falls on a break point. Our
purpose is to avoid nondifferentiability while obtaining quadratic local convergence. With

the intention of taking unit steps, we choose « as follows. For a given 7; > 0, let

@ = min(Qep, 1 + 011), (3.31D)
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where 6 is defined in (3.8). Then for a given 1, € (0, 1),

[ fios +max(z, 1= 6)(Bi — fi-1), if& = p; forsome 1 < i < imax,

a, otherwise.

(3.32)

In other words, if & is not a break point, then it will be taken as the step length; otherwise,
a small step back from & is used to get the step length.

Itisclearthat o < @ < Copr- SINCE @y is the “left-most” global minimizer of ¥, we
must have

Y'(a) <0. (3.33)
Moreover, by (3.26) and (3.13),

—¥'(0) = —syd = ¢" + s Y| Dys, = ¢, (3.34)
which implies that &,,; > min(1, 1), @ > min(l, 8;), and

a > min(1, max(z;, 1 — 6)8). (3.35)
Conditions (3.33) and (3.35) will be useful in the next section.
Remark. It is clear from (3.31) that

a =max{a < 1+67;:y (o) < 0).
Therefore, we may calculate & by bisection on the interval [0, 1 + 01] using the sign of

¥’'(«). This procedure is usually more efficient in practice since the break points often
appear in clusters.

4. Global convergence and detecting infeasibility
To prove global convergence, a primal nondegeneracy assumption will be needed. Given
an index set Z, let A7 denote the submatrix of A consisting of those columns of A whose
indices are in Z. Let

C={x eR":F(y,w) =0 for some w € K", where y = Hx +c — ATw).
Definition. We say that problem (1.1) is primal nondegenerate if rank(Az) = m forevery
xeC,whereZ=Z(x):={i:1<i<n,|x]|+#1).

A direct consequence of primal nondegeneracy is the following result.

Lemma 4.1.  Suppose problem (1.1) is primal nondegenerate. Then the set C is finite.
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Proof: Letx € C. LetZ = Z(x) and let Z¢ denote the complement of Z. By the definition
of C and the definition of F in (1.5), y;d; = Oforeveryi = 1,2,...,n. Foreachi € Z,
|x;| # 1, which implies that d; # 0. Therefore y; = 0, i.e.,

H

Xz T Hzx:rfxzf +c; = A-Zw =0, 4.1)
where H, .. denotes the submatrix of H consisting of those entries of H whose row indices

are in Z and column indices are in Z¢. Similar notation is used for other terms. Since
H >0,

IxI

X7

= Hz:; (Asz — HypeXpe — Cz)' 4.2)
Then using (4.2) and the facts that Ax = b (since x € C) and that rank(Az) = m {by the
primal nondegeneracy), we have

- -1 -
w= (AIHIX;AIT) (b - AICxIC + AIHIxi'(xI( +CI)).

Therefore x, is uniquely determined when x,. has been given. Since there are only finitely

many choices for x,. (x; = 1 or —1if i € Z¢), the number of points in C is finite. O

Let {(x*, y*, w*)} be the sequence generated by Algorithm Exterior-Newton and let o
be calculated by (3.32) for each k = 0,1, 2, .... The convergence results are presented
in the following order. We first show that if problem (1.1) is primal nondegenerate and

if the sequence {||y*||} is bounded above, the sequence {x*} will converge to the solution

of (1.1). We then prove that if problem (1.1) is feasible and primal nondegenerate, the
sequence {||y*||} will be bounded above. Therefore, given that problem (1.1) is feasible and
primal nondegenerate, the sequence {x*} will converge to the solution of (1.1). Measures
for detecting infeasibility are provided at the end of the section.

Lemma 4.2. Suppose {||y*||} is bounded. Then {|w*|| + ||x*||} is bounded above and
{f &%, wh)} is bounded below. Consequently, { f(y*, w¥)} converges.

Proof: By (3.22) and (3.23), we have

AH'ATW = b — AH7' (5% — ).
Since A is assumed to have full row rank, it follows that {||w||} is bounded. Then by (3.23)
again, {||x*||} is bounded. Therefore, { f(y*, w¥)} is bounded below since f can be written

as f(y,w) = —b"w + 7x" Hx + ||y|l;. Moreover, by (3.33) and (3.35), { f (y*, w®)} is
monotonically decreasing. Hence { f (y*, w¥)} converges. a

Lemma 4.3. Suppose {||y* ||} is bounded. Then min(1, ©,85)(V )7 s* — 0.
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Proof: Let o), =min(l, ,85), yk = y* + ah sk, and wk = wk + ok sX . We have, using
the definition of f in (2.1),

FOS W = FOR, wh)

k kT k . KNT K (0‘1151)2
= ——am[(Vf) st — sign(y") sy] —

T(s"fﬁs" = Iy5 I+ 11y* 1,

k 2
= —af (VfHTsk — (a%)(s")THsk, (4.3)

as well as
f(yk7 wk) - f(yia wﬁ.)

(o)

=~ [V Ok w5 = sign(h)"s§] 4+ 2 (T A + 1yl — Iy,
k\2

ok S ) KNT g7 ok

= —a, VI(y, w)'s +=- T Hs*. (4.4)

By Lemma 3.4, (3.33) and (3.35), V f(y%, wk)Ts* < 0. Hence adding (4.3) and (4.4)
yields

20f &5, w*) = FOL whl = —ak (VYT sF > 0.
Since a, < & < &, by (3.35), F(YH, wht!) < f (%, wk). Therefore

2G5 W) = fOM W] = —ak (VTS = 0
and the convergence of { f (y*, w*)} forces that X (V f¥)Tsk — 0. |
Theorem 4.4. Suppose {||y* ||} is bounded. Then

IFG*, whl = 0.

The proof of Theorem 4.4 is a proof by contradiction and is postponed until we have
proved the following several lemmas.

Lemma 4.5. Suppose {|| yXII} is bounded. If any subsequence (0%} of {6*} is bounded
away from zero, then {||Hy;! || + lls¥1| + lls¥ || + 5% ||} is bounded.

Proof: 'We may omit the superscript 4; in the proof when there is no confusion.
First, by Lemma 4.2, {||x¥||} is bounded. Then by (3.1), {{V f*|i} is bounded.
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Using the definition of H, in (3.7), and the notations s = (sy, $y) and s, = H™! (sy +
ATs,), we have

sTHps = sxTst -+ syT1Y|'1D9sy.

Since {||y* ||} is bounded, we may assume that ||y*|lc < M for some constant M > 1 and

for all k. Then by (3.6), the definition of Dy in (3.7), the fact that H > 0, and the fact that
{6%} is bounded away from zero, there exist €, €; >0, such that

- €
sT Hos > € |ls: > + M%usyuz. 4.5)

Since A has full row rank and s, = H™! (sy + ATs,), there exists €3 > 0 such that

sT Hyps > e3ls]. (4.6)
Thus
. 1 ;
|| H, || < g or every k;. @.7

The boundedness of {||s¥ ||}, {lls|I}, and {}is¥ ||} then follows from the boundedness of
{||ka II1, (3.6) and (3.13). ['_'l

Lemma 4.6. Suppose {||y*||} is bounded. If any subsequence {6%} of {0*} is bounded
away from zero, then (V f*)T sk — 0.

Proof: If the lemma is not true, then by Lemma 4.3, there exists a subsequence, still
denoted by { ,8{"}, which converges to zero. By (3.17) and (3.16), we may assume without
loss of generality that

From (3.9), we have (using (3.13))

ok + (1 — 6%)]dy| Gt
sign()[xy' + (s3'), + sign(y)] (V)

— 0. 4.8)
1
Therefore, we must have x{" + (S;I:')l — 00 since {6%} is bounded away from zero. This is
a contradiction to the fact that the sequences {||lx*}|} and {||s¥||} are bounded. O

Lemma 4.7. Suppose {||y*||} is bounded. If any subsequence {6*'} of {6*} is bounded
away from zero, then ||s¥ || 4 ||sk|| + |lsf|| — O.
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Proof: By (3.6), —(V f5)Ts* = (s*)T Hyes*. Then similar to (4.6),
—(VS5) sk = e |sM) . (4.9)
Therefore the lemma follows from the fact that s¥ = (s§’, S,’L’), Lemma 4.6 and (3.13). O

Lemma 4.8. Suppose {||y*||} is bounded. If any subsequence {6%} of {0*} is bounded
away from zero, then || F (y*, wk)|| — 0.

Proof: The Eq. (3.9) yields
(1Y|H™' + Dg)s, + |Y|H ' ATs,, = —|Y|d. (4.10)

The boundedness of {||x*||} implies that {|| Dy« ||} is bounded. Therefore || |Y*|d*| — 0
since ||sf,’ |l + llsk|| — O (Lemma 4.7) and {||Y*|j} is bounded. Then the }emma follows
from the definition of F in (1.5) and (3.22). O

Proof of Theorem4.4:  If Theorem4.41is false, then there is asubsequence {|| F (y*, w*)||}
that is bounded away from zero. Therefore, definition (3.8) shows that the subsequence
{6%} is bounded away from zero. Consequently || F(y*, w*)|]| — 0 by Lemma 4.8. That
is a contradiction. Therefore, Theorem 4.4 must hold. O

Corollary 4.9. Suppose problem (1.1) is primal nondegenerate and {||y*)|} is bounded.
Then the number of limit points of {x*} is finite.

Proof: Let X be any limit point of {x*}. Since all the sequences {||x* ||}, {|| y* |13, and {|jw* |}
are bounded, we may assume that x* — %, y¥ — 3§ andw® — @. By Theorem 4.4,
F(y,w) = 0and x € C. Therefore every limit point of {x*} is in the set C and the result
follows from Lemma 4.9. O

Lemma 4.10. Suppose problem (1.1) is primal nondegenerate and {||y*||} is bounded.
Then {x*} converges.

Proof: By Lemma 4.2, {x*} has at least one limit point. Let ¥ and £ be any two limit
points of {x*}. We show that X and # must be the same.

If |x;] <1 (1 <i <n)and|X;| <1 (1 <i < n). Then by Theorem 4.4, both ¥ and %
are solutions of (1.1). Since (1.1) has a unique solution, we must have ¥ = x.

If |x;] > 1 for some 1 < i < n and if {x*} does not converge to %, then by Lemma 4.10
in [18], there exists a subsequence {x"} which converges to ¥ and ||x¥*! — xk|| > ¢ for
some fixed € > O (for all k;). Moreover, by the definition of 8 in (3.8), the subsequence 6%
must be bounded away from zero since x,k — x and |x;] > 1. Then Lemma 4.7 shows
ls¥]| — 0. Therefore, ||x**+! — xk|| = ||k sk || — 0 which results in a contradiction.

Similarly, it cannot happen that |%;| > 1 for some 1 < i < n and that {x*} does not
converge to x. This completes the proof. 0
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Theorem 4.11.  Suppose problem (1.1) is primal nondegenerate {{|y* ||} is bounded. Then
{x*} converges to the solution of (1.1).

Proof: By Lemma 4.10, we may assume that x* — x*. Then x* satisfies the optimality
conditions (1.3) and (1.4) (Theorem 4.4). Therefore, it suffices to show that |x'| < 1 for

every i = 1,2,...,n. Without loss of generality, we will only show that if x> 1,a
contradiction will result. We can show in a similar way that x* < 1 and x; > —1 for every
i=1,2,...,n.

First, by (4.10) and (3.13), foreachi = 1,2, ..., n,

(sk) - _ |y (d + (sf)x)
y/i 9k+(]—9k)|dik|’

where df = x} -+ sign(y). 4.11)

Now assume xi > 1. Then the sequence {6*} is bounded away from zero. Hence
lIs¥]l = 0 (Lemma 4.7) and there exists €; > 0 such that for all k sufficiently large,

d*>e, df + (s)’c‘)1 > e OFxk + (sk)] >¢; and (s;‘)1 <0. (4.12)

X

By Theorem 4.4, yfdj — 0 which implies y{ — 0. Noticing that y{*' = y¥ + o*(sk);,
we must have, for all £ sufficiently large,

y¥>0 and d=1+xF>2 (4.13)

Therefore, by (3.16) and (4.11), for all k sufficiently large,

o oF + (1 —-ohlar| - 0*xt + (s5), -1 (4.14)
b sign(yf) (df + (s4),) i +{st), '
and
k+1 k k
O<ab=2l —N N _ & (4.15)
(Sly()l ]

One the other hand, let

Jh={j:1<j<nri<rf}

which is not empty since 1 € J*. Then similar to (4.14),

ok + (1 — 0%)|dk
0 POl _

0 6% + (1 — 65| df|
sign(y5)(d} + (s5) ;) :

SN = N T (i
sign(y1)(df + (s¥),)

for every j € J*.

(4.16)
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Hence when k is sufficiently large, szgn(yj)(d" + 5 = |d% + (s¥) ;| for every j € J*.
Thus (4.16) can be rewritten as

6% + (1 — 6%)|d"| _ 0 +a—ehdt

< forevery j € J*.
ld} + (s5), di +{s¥),

Therefore, for every k sufficiently large,

4+ ) =t (1= 125,

(s )j for every j € J*.

Consequently, since [|s¥]| — 0, d¥ > 2 (by (4.13)), and ||d*|| is bounded above, when k is
sufficiently large,

|df + (sf)jl > 2 foreveryj e J*.

Now using (3.29), (3.14), (3.12), and (3.25),

V()T) = (53) @ i () sk + 30 (%),

jeJk

- —‘1ﬁ”— (SS)TfYkI—lDBkSI; +r{(¢//+ Z 1(s]y‘)
jeJk

= (”{(_ ) //_( k) IYkl“les +’)Zi k) |
jeJk

(Dgr) j (s)
- _Z |]2| L4233 {(s),] by @4y
= jeJk

ok
< Z (2 - (————)|’—;{I(——)~|) 1(s y)jl (by dropping some negative terms)
jeJk J
= > = 1df +(s9),DI(sh),] - ®y @11y
jeJ*
<0 “4.17)

where the last inequality is strict because 1 € J* and (%) # 0. Therefore, a’gp, > rk,
ak > rl (by the definition of @ in (3.31) and by the fact that r, < 1),and o* > r1 (by the

definition of « in (3.32)). This is a contradiction to (4.15). O

Next, we show that if (1.1) is feasible and primal nondegenerate, then the sequence
{lly* ||} must be bounded. To this end, we first give a general result (Lemma 4.12) which is
a restatement of Corollary 8.7.1 in [20].
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Let ¢(z) : " — N be any convex function. Let the set of minimizers of ¢ be
Sy = {z* : z* is a global minimizer of ¢}.
Since ¢ is convex, any local minimizer of ¢ is also a global minimizer.

Lemma 4.12. Suppose ¢ is a convex function and the set Sy is nonempty and bounded.
Then for any given 20, the level set

Lz = {z:¢(z) < ¢(z")

is bounded.
The following result is well-known (see, e.g., Lemma 6.7 in{2]) and the proof is omitted.

Lemma 4.13. Suppose (1.1) is feasible and primal nondegenerate. Then problem (2.1)
has a unique solution.

Corollary 4.14. Suppose (1.1) is feasible and primal nondegenerate. Then the sequence
{IIy*1l} is bounded.

Proof: Since f(y, w) is convex, by Lemma 4.12 and Lemma 4.13, the level set
Lo:={@ w): fw) < FO° wh}

is bounded. Then the corollary follows from the fact that { f(y*, w¥)} is monotonically
decreasing. O

To sum up, we have the following theorem:

Theorem 4.15.  Suppose (1.1) is primal nondegenerate. If (1.1) is feasible, then (y*, w*,
1) — (v, w*, x*), where x* is the solution of (1.1), w* is the Lagrange multiplier,
and (y*, w*) solves (2.1). On the other hand, if (1.1) is infeasible, then (1Y%} must be
unbounded.

The following condition can be used for detecting infeasibility.

Lemma 4.16. Let H = (h;j) and f,, = %Zi’j lhijl + il If — f &%, wh) > fu for
any k, then problem (1.1) is infeasible.

Proof: By (2.4),if Q # @, then for any(y, w) € R"*",

—f(y, w) < max{g(x)|x € 2}
max{g ()| xlle < 1}
< Jub- (4.13)

IA

Hence the lemma follows. O
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In our numerical experiments, Lemma 4.16 was used and was seen effective for detectin g
infeasibility.

5. Quadratic convergence

In this section, we assume that problem (1.1) is feasible and primal nondegenerate. Then
(x*, y*wk) — (x*, y*w*) where x* is the solution of (1.1) and (y*, w*) is the solution of
(2.1). In addition, y* = Hx* + ¢ — ATw*.
The following strict complementarity condition will be assumed for establishin g quadratic
convergence:
Ix'|=1=y"#0 foreveryi=1,2,...,n. (5.1)
Lemma 5.1. Suppose condition (5.1) holds. Let

|[YM{H™! 4 |Dgx| |Y*|H-'AT
Gk -
' AH™! AH AT

Then

G |[Y*|H™! +|D*| |Y*|H'AT
o AH™! AH AT

} = lim G*

is nonsingular, where D* = diag(x* + sign(y*)). Consequently,
sk = (s;‘, sﬁ)) — 0. (5.2)
Proof: Let G*z = 0. We show that z must be zero. Then it follows that G* is nonsingular.

Write z = (2!, z?) where z! € R" and z2 € ®™. By (5.1), y7. = 0and dj # 0. Hence
G*z = 0 implies z]I* = 0. Therefore, the equation G*z = 0 can be reduced to

Hioze  (HT'AT)z Tzl .
T Fl=0. (5.3)
(H—IAT)%"C AH—]AT Z2

Using Corollary 1 in {12] and the fact that rank(A;*) = m, we see that the coefficient
matrix in (5.3) is positive definite. Consequently (zJ., z2) = 0.
To show (5.2), we note that (3.6) is equivalent to

Yk|a*
Gksk = —[I OI ] (54)

Since G¥ - G* and |Y*¥ldk — 0, (5.2) follows from the nonsingularity of G*. O
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To show quadratic convergence, we cite a standard result (see, e.g., [5]), used subse-
quently.

Theorem 5.2. Let D C R be an open convex set. Letv* € D, F : R — R!, F(v*) =0,
V F (v*) be nonsingular, and V F be Lipschitz continuous at v* in D. Let {T}} be a sequence
of nonsingular matrices in R*!. Suppose for some v° € D that the sequence of points
generated by Vil = ok — Tk_lF(vk) remains in D, v* # v* for every k, and v* — v*.

If |Tx — VF@")|| = 0, then {v*} converges superlinearly to v*.

IfIT, — VFEFQY)| = O (||lvF — v*|)), then {v*} converges quadratically to v*.

Theorem 5.2 can not be directly applied to the function F defined in (1.5) since F is
not differentiable at some points. Instead, we apply Theorem 5.2 to the following auxiliary
function:

. Yd
F(y,w) := SRR pmAn
(v, w) [Ax B b}
where
d :=x+sign(y*), and x = H 'y —c+ ATw). (5.5)

In other words, the nondifferentiable term sign(y) in F is frozen to a constant vector sign(y*)
to form an everywhere-differentiable function F. Clearly, d* = d* = x™ + sign(y*) and

FO&y*, w") = F(*, w*) =0.
Moreover, the Jacobian of F ,
. YH '+ D YH AT
VF = ,
AH™! AH AT

exists and is continuous everywhere in i”*". Similar to Lemma 5.1, we have the following
lemma without proof:

Lemma 5.3. Suppose condition (5.1) holds. Then the Jacobian VF (y*, w*) is nonsingu-
lar. Moreover, there exist § > 0 and a neighborhood Bs(y*, w*) of (y*, w*), such that VF
is Lipschitz continuous at (y*, w*) in Bs(y*, w*), and VF is nonsingular at every (y, w) €
Bs(y*, w*).

Lemma 5.4. Suppose condition (5.1) holds. Then for all k sufficiently large,

sign(y¥) = sign(y}) and d*=d* foralli € T¢, (5.6)
(s’y‘)i # 0 and sign((ss)i) = —sign(yf) = —sign(d!‘) foralli € Z,. (5.7
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Proof: Leti € Z{. Thend] =0, y* # 0 and (5.6) follows immediately.

Now leti € Z,. Then d} # 0 and ¥ = 0. By (5.1), it must be true that [x}| < 1. Hence
for all k sufficiently large, sign(d;’) = sign(d) = sign(x + sign(y)) = sign(y¥). Using
(4.11) and the fact that s)’(‘ — 01(by (5.2) and (3.13)), we have (5.7). O

Lemma 5.5. Suppose condition (5.1) holds. Then

l
k—>00

) {oo, ifi € I¢

lim r{ = 4 ;
1, otherwise.

Proof: Leti € 7. Then y} + 0. Since s} — 0, it follows from (3.16) that rF— oc.
If i € Z,, then d* # 0. Since 6% — 0, by (3.16), (4.11) and (5.7), we see rik - 1. a

By (5.6) and (5.7), for allk sufficiently large, either d¥ = d* if i € Z¢, or d* % 0 if
i € 7, (the vector d is defined in (5.5)). Define a vector d* € %" for each k by

sign(yik) ifi € I¢
dk ={ jk

Z,’;—sign ( ylk) otherwise,

1

and let D* = diag(d*). We may rewrite (5.4) as
TEsk = —F(y*, wh), (5.8)

where

1k ivky g—1 L Rkivk) g—1 4T
D (IYHH™ + |Dgt|) —DNYXIH 1A
k._ | of o k. k.ok
T, = [ 14g | AH-1 AT and s, :=a"s*. (5.9)

By Theorem 5.2, if for all k sufficiently large, T* is nonsingular and

75 = VEG*, wh)| = 0I5, wh) — &, wH): (5.10)

here (y*, w*) — (y*, w*) quadratically. Now we establish these results.

Lemma 5.6. Suppose condition (5.1) holds. Then the Jfollowing will hold:
() 6% = OlI(Y*, wh) — (y*, wHI);

(i) [ID*|Y*| — Vil = oIk, wh) — (%, wH;

(iii) |D*|Dgt| — D*|| = OO, wh) — (3%, wH)|);

(V) 11—k = OG5, wh) — (v, wH).




AN EXTERIOR NEWTON METHOD 27

Proof: Result{i) is straightforward by (3.8), (1.5) and the fact that
x* — H—] (y* —C+AT'LU*).
For (ii), consider firsti € Z,. Then y = 0 and d]" # 0. Hence

i L d*
¥y = v = |di]vi]| = l@—rlyf — ¥ = 0UIOK, wh) — G, wH).  (5.11)

If i € Z¢, then by (5.6),
4|y | = vi| = Isign() i | = ¥ = yf = ¥l = 00165, wh = O, wHID.
Therefore, (ii) follows.
Result (iii) can be proved similarly by using (i) and Lemma 5.4.
To show (iv), by (3.31), (3.32) and (3.35),
min(1, (1 — 6*) Bf) < of < 14 6*1,, for all k sufficiently large.
Hence
min(0, Bf —1— 0% Bf) <o —1 < 6*7y.
By (i), it suffices to show that
1B — 1] = 01", w) — &, wH.

In fact, since rank(Ag*) = m, I, is not empty. Therefore, Lemma 5.5 shows that for every
k sufficiently large,

B = r;‘ﬁ. and pteZ,.
Moreover, by (5.4), it is easy to see that

Is* I = Ol wh) — O, wHID,
which implies

|sk] = 0UIO*, w") = &, wH).

Therefore, by (3.16), (4.11) and (5.7),

k
Iﬂi‘—ll:irﬁk—l‘:(— S
: (Sy)pf




30 COLEMAN AND L1U

Table 4. Dense and degenerate problems.

Size Cond = 103
n m Max Avg
200 50 38 31.3
200 100 67 55.7
200 150 48 44

Table 5. A comparison with infeasible interior point method (I1IPM).

Size
Name n m IIPM (IBM OSL) Exterior-Newton
afiro 51 27 11 6
agg?2 558 516 9 16
blend 114 74 9 7

m = I? and n > m, we partition the unit square {0, 1] x [0, 1]into an (I 4+ 2) x (I +2)
evenly spaced grid, and obtain m = I? interior nodes (mesh points). For each node there
is a first order spline basis function (the pyramid function) ¥; (1 <i < m). Let z j € R2
(1 < j < n) be randomly scattered on the unit square. Then

A = (a;j) where a;; := ¥;(z;).

Such matrices appear in various applications. One example is to determine the spline func-
tion which is a linear combination of the m basis functions that fits best with the observed
values at n points, usually in the least squares sense. It should be noted that problems in
this set may be degenerate.

Table 3 reports on another set of sparse problems, where the matrix H was generated
the same way as in the second set, while the matrix A was “imported” from the set of
linear programming test problems. We used three matrices A from “agg2”, “boeing1”, and
“fffff800”. Again, problems in this set may be degenerate. “Cond” is the condition number
of H.

Problems in the fourth set are again dense problems but they are highly degenerate. The
matrix H and A were chosen to be well-conditioned (cond (H) = cond(A) = 1000) so that
we can clearly see the effect of degeneracy.

Since an infeasible interior point method does not require a feasible starting point for
convex quadratic programming problems (including LP), it would be interestin g tocompare
one with our method. Hence, in Table 5, a comparison is made between our al gorithm and
an infeasible primal-dual interior point method, implemented in the IBM Optimization
Subroutine Library (OSL) [23], for three problems. The three test problems were generated
as follows. We first obtain a linear programming test problem from Netlib (afiro, agg2, and
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blend), change the bound constraints from x > 0 to —1 < x < 1, set the right hand side to
zero (so the problem is guaranteed to be feasible), and add a quadratic term 3 x7 Hx with H
being the identity matrix. )

The numerical experiment results indicate that the proposed method is very effective for
nondegenerate problems and the number of iterations is reasonably small for degenerate
problems. Itis clear that the number of iterations is not very sensitive to problem dimension.
The number of iterations in Table 5 shows that our algorithm is comparable to the infeasible
primal-dual interior point method for certain QP problems. We also tested several infeasible
problems and the infeasibility was always detected in less than 10 iterations. Finally, we
remark that given an infeasible point near to the solution, the proposed method can be used
to identify the solution very quickly. For example, we considered the test problems in
Table 1, Row 1. For each problem, the starting point was taken by perturbing the solution
by a random vector with /, norm less than 0.01. The average number of iterations required
was 8.8.

7. Concluding remarks

We have proposed an exterior Newton method for convex QP with equality constraints and
lower and upper bounds. Based on a dual formulation, the proposed algorithm monotoni-
cally decreases a dual objective function. Strong convergence results are established. Pre-
liminary numerical experiments demonstrate the potential of this algorithm. We have also
applied the algorithm to some (known) infeasible problems, and infeasibility was always
detected at an early stage. One open question is whether the nondegeneracy assumption
can be removed from the convergence proof following the work in [22]. Another open
question is whether this approach can be adapted to solve QP problems when H is positive
semidefinite. This extension will be interesting and important since linear programming
problems will be included. We plan to investigate this issue.
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